PyMAF-X模型完整复现记录

PyMAF-X的复现记录

创建全新环境,命名为PyMAF-X,并激活

1
2
conda create -n PyMAF-X python==3.10.18
conda activate PyMAF-X

结果:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
Collecting package metadata (current_repodata.json): done
Solving environment: done

==> WARNING: A newer version of conda exists. <==
current version: 4.9.2
latest version: 25.7.0

Please update conda by running

$ conda update -n base -c defaults conda

## Package Plan ##

environment location: /data1/supersmpl/wzn/.conda/envs/PyMAF-X

added / updated specs:
- python==3.10.18

The following NEW packages will be INSTALLED:

_libgcc_mutex pkgs/main/linux-64::_libgcc_mutex-0.1-main
_openmp_mutex pkgs/main/linux-64::_openmp_mutex-5.1-1_gnu
bzip2 pkgs/main/linux-64::bzip2-1.0.8-h5eee18b_6
ca-certificates pkgs/main/linux-64::ca-certificates-2025.7.15-h06a4308_0
expat pkgs/main/linux-64::expat-2.7.1-h6a678d5_0
ld_impl_linux-64 pkgs/main/linux-64::ld_impl_linux-64-2.40-h12ee557_0
libffi pkgs/main/linux-64::libffi-3.4.4-h6a678d5_1
libgcc-ng pkgs/main/linux-64::libgcc-ng-11.2.0-h1234567_1
libgomp pkgs/main/linux-64::libgomp-11.2.0-h1234567_1
libstdcxx-ng pkgs/main/linux-64::libstdcxx-ng-11.2.0-h1234567_1
libuuid pkgs/main/linux-64::libuuid-1.41.5-h5eee18b_0
libxcb pkgs/main/linux-64::libxcb-1.17.0-h9b100fa_0
ncurses pkgs/main/linux-64::ncurses-6.5-h7934f7d_0
openssl pkgs/main/linux-64::openssl-3.0.17-h5eee18b_0
pip pkgs/main/noarch::pip-25.1-pyhc872135_2
pthread-stubs pkgs/main/linux-64::pthread-stubs-0.3-h0ce48e5_1
python pkgs/main/linux-64::python-3.10.18-h1a3bd86_0
readline pkgs/main/linux-64::readline-8.3-hc2a1206_0
setuptools pkgs/main/linux-64::setuptools-78.1.1-py310h06a4308_0
sqlite pkgs/main/linux-64::sqlite-3.50.2-hb25bd0a_1
tk pkgs/main/linux-64::tk-8.6.15-h54e0aa7_0
tzdata pkgs/main/noarch::tzdata-2025b-h04d1e81_0
wheel pkgs/main/linux-64::wheel-0.45.1-py310h06a4308_0
xorg-libx11 pkgs/main/linux-64::xorg-libx11-1.8.12-h9b100fa_1
xorg-libxau pkgs/main/linux-64::xorg-libxau-1.0.12-h9b100fa_0
xorg-libxdmcp pkgs/main/linux-64::xorg-libxdmcp-1.1.5-h9b100fa_0
xorg-xorgproto pkgs/main/linux-64::xorg-xorgproto-2024.1-h5eee18b_1
xz pkgs/main/linux-64::xz-5.6.4-h5eee18b_1
zlib pkgs/main/linux-64::zlib-1.2.13-h5eee18b_1

Proceed ([y]/n)? y

Preparing transaction: done
Verifying transaction: done
Executing transaction: done
#
# To activate this environment, use
#
# $ conda activate PyMAF-X
#
# To deactivate an active environment, use
#
# $ conda deactivate

环境创建成功,同时主环境由base变为PyMAF-X:

原:

1
(base) wzn@amax:~$

现:

1
(PyMAF-X) wzn@amax:~$
  • 安装2.3.1版本的torch和11.8版本的cuda,并安装pytorch3d(需要挂VPN)
1
2
export https_proxy=http://127.0.0.1:7890 http_proxy=http://127.0.0.1:7890 all_proxy=socks5://127.0.0.1:7891
pip install torch==2.3.1+cu118 torchvision==0.18.1+cu118 -f <https://download.pytorch.org/whl/torch_stable.html>

结果:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
Looking in links: <https://download.pytorch.org/whl/torch_stable.html>
Collecting torch==2.3.1+cu118
Using cached <https://download.pytorch.org/whl/cu118/torch-2.3.1%2Bcu118-cp310-cp310-linux_x86_64.whl> (839.7 MB)
Collecting torchvision==0.18.1+cu118
Using cached <https://download.pytorch.org/whl/cu118/torchvision-0.18.1%2Bcu118-cp310-cp310-linux_x86_64.whl> (6.3 MB)
Collecting filelock (from torch==2.3.1+cu118)
Using cached filelock-3.19.1-py3-none-any.whl.metadata (2.1 kB)
Collecting typing-extensions>=4.8.0 (from torch==2.3.1+cu118)
Using cached typing_extensions-4.15.0-py3-none-any.whl.metadata (3.3 kB)
Collecting sympy (from torch==2.3.1+cu118)
Using cached sympy-1.14.0-py3-none-any.whl.metadata (12 kB)
Collecting networkx (from torch==2.3.1+cu118)
Using cached networkx-3.4.2-py3-none-any.whl.metadata (6.3 kB)
Collecting jinja2 (from torch==2.3.1+cu118)
Using cached jinja2-3.1.6-py3-none-any.whl.metadata (2.9 kB)
Collecting fsspec (from torch==2.3.1+cu118)
Using cached fsspec-2025.7.0-py3-none-any.whl.metadata (12 kB)
Collecting nvidia-cuda-nvrtc-cu11==11.8.89 (from torch==2.3.1+cu118)
Using cached nvidia_cuda_nvrtc_cu11-11.8.89-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)
Collecting nvidia-cuda-runtime-cu11==11.8.89 (from torch==2.3.1+cu118)
Using cached nvidia_cuda_runtime_cu11-11.8.89-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)
Collecting nvidia-cuda-cupti-cu11==11.8.87 (from torch==2.3.1+cu118)
Using cached nvidia_cuda_cupti_cu11-11.8.87-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)
Collecting nvidia-cudnn-cu11==8.7.0.84 (from torch==2.3.1+cu118)
Using cached nvidia_cudnn_cu11-8.7.0.84-py3-none-manylinux1_x86_64.whl.metadata (1.6 kB)
Collecting nvidia-cublas-cu11==11.11.3.6 (from torch==2.3.1+cu118)
Using cached nvidia_cublas_cu11-11.11.3.6-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)
Collecting nvidia-cufft-cu11==10.9.0.58 (from torch==2.3.1+cu118)
Using cached nvidia_cufft_cu11-10.9.0.58-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)
Collecting nvidia-curand-cu11==10.3.0.86 (from torch==2.3.1+cu118)
Using cached nvidia_curand_cu11-10.3.0.86-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)
Collecting nvidia-cusolver-cu11==11.4.1.48 (from torch==2.3.1+cu118)
Using cached nvidia_cusolver_cu11-11.4.1.48-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)
Collecting nvidia-cusparse-cu11==11.7.5.86 (from torch==2.3.1+cu118)
Using cached nvidia_cusparse_cu11-11.7.5.86-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)
Collecting nvidia-nccl-cu11==2.20.5 (from torch==2.3.1+cu118)
Using cached nvidia_nccl_cu11-2.20.5-py3-none-manylinux2014_x86_64.whl.metadata (1.8 kB)
Collecting nvidia-nvtx-cu11==11.8.86 (from torch==2.3.1+cu118)
Using cached nvidia_nvtx_cu11-11.8.86-py3-none-manylinux2014_x86_64.whl.metadata (1.7 kB)
Collecting triton==2.3.1 (from torch==2.3.1+cu118)
Using cached triton-2.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (1.4 kB)
Collecting numpy (from torchvision==0.18.1+cu118)
Using cached numpy-2.2.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (62 kB)
Collecting pillow!=8.3.*,>=5.3.0 (from torchvision==0.18.1+cu118)
Using cached pillow-11.3.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.metadata (9.0 kB)
Collecting MarkupSafe>=2.0 (from jinja2->torch==2.3.1+cu118)
Using cached MarkupSafe-3.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (4.0 kB)
Collecting mpmath<1.4,>=1.1.0 (from sympy->torch==2.3.1+cu118)
Using cached mpmath-1.3.0-py3-none-any.whl.metadata (8.6 kB)
Using cached nvidia_cublas_cu11-11.11.3.6-py3-none-manylinux2014_x86_64.whl (417.9 MB)
Using cached nvidia_cuda_cupti_cu11-11.8.87-py3-none-manylinux2014_x86_64.whl (13.1 MB)
Using cached nvidia_cuda_nvrtc_cu11-11.8.89-py3-none-manylinux2014_x86_64.whl (23.2 MB)
Using cached nvidia_cuda_runtime_cu11-11.8.89-py3-none-manylinux2014_x86_64.whl (875 kB)
Using cached nvidia_cudnn_cu11-8.7.0.84-py3-none-manylinux1_x86_64.whl (728.5 MB)
Using cached nvidia_cufft_cu11-10.9.0.58-py3-none-manylinux2014_x86_64.whl (168.4 MB)
Using cached nvidia_curand_cu11-10.3.0.86-py3-none-manylinux2014_x86_64.whl (58.1 MB)
Using cached nvidia_cusolver_cu11-11.4.1.48-py3-none-manylinux2014_x86_64.whl (128.2 MB)
Using cached nvidia_cusparse_cu11-11.7.5.86-py3-none-manylinux2014_x86_64.whl (204.1 MB)
Using cached nvidia_nccl_cu11-2.20.5-py3-none-manylinux2014_x86_64.whl (142.9 MB)
Using cached nvidia_nvtx_cu11-11.8.86-py3-none-manylinux2014_x86_64.whl (99 kB)
Using cached triton-2.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (168.1 MB)
Using cached pillow-11.3.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (6.6 MB)
Using cached typing_extensions-4.15.0-py3-none-any.whl (44 kB)
Using cached filelock-3.19.1-py3-none-any.whl (15 kB)
Using cached fsspec-2025.7.0-py3-none-any.whl (199 kB)
Using cached jinja2-3.1.6-py3-none-any.whl (134 kB)
Using cached MarkupSafe-3.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20 kB)
Using cached networkx-3.4.2-py3-none-any.whl (1.7 MB)
Using cached numpy-2.2.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.8 MB)
Using cached sympy-1.14.0-py3-none-any.whl (6.3 MB)
Using cached mpmath-1.3.0-py3-none-any.whl (536 kB)
Installing collected packages: mpmath, typing-extensions, sympy, pillow, nvidia-nvtx-cu11, nvidia-nccl-cu11, nvidia-cusparse-cu11, nvidia-curand-cu11, nvidia-cufft-cu11, nvidia-cuda-runtime-cu11, nvidia-cuda-nvrtc-cu11, nvidia-cuda-cupti-cu11, nvidia-cublas-cu11, numpy, networkx, MarkupSafe, fsspec, filelock, triton, nvidia-cusolver-cu11, nvidia-cudnn-cu11, jinja2, torch, torchvision
Successfully installed MarkupSafe-3.0.2 filelock-3.19.1 fsspec-2025.7.0 jinja2-3.1.6 mpmath-1.3.0 networkx-3.4.2 numpy-2.2.6 nvidia-cublas-cu11-11.11.3.6 nvidia-cuda-cupti-cu11-11.8.87 nvidia-cuda-nvrtc-cu11-11.8.89 nvidia-cuda-runtime-cu11-11.8.89 nvidia-cudnn-cu11-8.7.0.84 nvidia-cufft-cu11-10.9.0.58 nvidia-curand-cu11-10.3.0.86 nvidia-cusolver-cu11-11.4.1.48 nvidia-cusparse-cu11-11.7.5.86 nvidia-nccl-cu11-2.20.5 nvidia-nvtx-cu11-11.8.86 pillow-11.3.0 sympy-1.14.0 torch-2.3.1+cu118 torchvision-0.18.1+cu118 triton-2.3.1 typing-extensions-4.15.0

这段时间2min左右

检验安装结果:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
pip list
Package Version
------------------------ ------------
filelock 3.19.1
fsspec 2025.7.0
Jinja2 3.1.6
MarkupSafe 3.0.2
mpmath 1.3.0
networkx 3.4.2
numpy 2.2.6
nvidia-cublas-cu11 11.11.3.6
nvidia-cuda-cupti-cu11 11.8.87
nvidia-cuda-nvrtc-cu11 11.8.89
nvidia-cuda-runtime-cu11 11.8.89
nvidia-cudnn-cu11 8.7.0.84
nvidia-cufft-cu11 10.9.0.58
nvidia-curand-cu11 10.3.0.86
nvidia-cusolver-cu11 11.4.1.48
nvidia-cusparse-cu11 11.7.5.86
nvidia-nccl-cu11 2.20.5
nvidia-nvtx-cu11 11.8.86
pillow 11.3.0
pip 25.1
setuptools 78.1.1
sympy 1.14.0
torch 2.3.1+cu118
torchvision 0.18.1+cu118
triton 2.3.1
typing_extensions 4.15.0
wheel 0.45.1

安装pytorch3d:

1
pip install "git+https://github.com/facebookresearch/pytorch3d.git"

结果:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
Collecting git+https://github.com/facebookresearch/pytorch3d.git
Cloning <https://github.com/facebookresearch/pytorch3d.git> to /tmp/pip-req-build-u5th6tzj
Running command git clone --filter=blob:none --quiet <https://github.com/facebookresearch/pytorch3d.git> /tmp/pip-req-build-u5th6tzj
Resolved <https://github.com/facebookresearch/pytorch3d.git> to commit dd068703d1182256c7bacf3eb6014f24c1190369
Preparing metadata (setup.py) ... done
Collecting iopath (from pytorch3d==0.7.8)
Using cached iopath-0.1.10-py3-none-any.whl
Collecting tqdm (from iopath->pytorch3d==0.7.8)
Using cached tqdm-4.67.1-py3-none-any.whl.metadata (57 kB)
Requirement already satisfied: typing_extensions in ./.conda/envs/PyMAF-X/lib/python3.10/site-packages (from iopath->pytorch3d==0.7.8) (4.15.0)
Collecting portalocker (from iopath->pytorch3d==0.7.8)
Using cached portalocker-3.2.0-py3-none-any.whl.metadata (8.7 kB)
Using cached portalocker-3.2.0-py3-none-any.whl (22 kB)
Using cached tqdm-4.67.1-py3-none-any.whl (78 kB)
Building wheels for collected packages: pytorch3d
DEPRECATION: Building 'pytorch3d' using the legacy setup.py bdist_wheel mechanism, which will be removed in a future version. pip 25.3 will enforce this behaviour change. A possible replacement is to use the standardized build interface by setting the `--use-pep517` option, (possibly combined with `--no-build-isolation`), or adding a `pyproject.toml` file to the source tree of 'pytorch3d'. Discussion can be found at <https://github.com/pypa/pip/issues/6334>
Building wheel for pytorch3d (setup.py) ... done
Created wheel for pytorch3d: filename=pytorch3d-0.7.8-cp310-cp310-linux_x86_64.whl size=6288053 sha256=1badce2ff7365823c8370b0872effed5dca2a9bb6803604d8e6cecfa134fd42e
Stored in directory: /tmp/pip-ephem-wheel-cache-a3e47h4t/wheels/dd/74/cc/b9266c863f19026f796e59a04e1cd9eb3754474a52ce1b66ce
Successfully built pytorch3d
Installing collected packages: tqdm, portalocker, iopath, pytorch3d
Successfully installed iopath-0.1.10 portalocker-3.2.0 pytorch3d-0.7.8 tqdm-4.67.1

此过程大概2min左右

P.S:Python,torch和cuda的版本都需要和上述一致,一开始我选择的python版本为3.8就会不兼容,会发生错误

下载PyMAF-X文件夹,安装requirement.txt里面的安装包

在bash中使用如下代码:

1
git clone <https://github.com/HongwenZhang/PyMAF-X.git>

结果:

1
2
3
4
5
6
7
Cloning into 'PyMAF-X'...
remote: Enumerating objects: 424, done.
remote: Counting objects: 100% (424/424), done.
remote: Compressing objects: 100% (202/202), done.
remote: Total 424 (delta 238), reused 396 (delta 212), pack-reused 0 (from 0)
Receiving objects: 100% (424/424), 7.25 MiB | 4.80 MiB/s, done.
Resolving deltas: 100% (238/238), done.

此时下载的文件里面是没有data和example的,文件配置如下:

  • 通过https://pan.bnu.edu.cn/l/81f0v6下载data文件中的share_data.zip,下载下来解压之后里面就是example和data两个文件夹(里面的文件已经给你全部配好了,不需要额外操作)

将下载的两个文件转移到PyMAF-X文件夹中,获得的目录如下:

运行下面的代码:

1
pip install -r requirements.txt

出现错误:

1
ERROR: Could not open requirements file: [Errno 2] No such file or directory: 'requirements.txt'

错误原因:目录位置不对,应该将bash的位置移动到PyMAF-X文件夹下

解决代码:

1
cd PyMAF-X/

效果:

1
2
(PyMAF-X) wzn@amax:~$ cd PyMAF-X/
(PyMAF-X) wzn@amax:~/PyMAF-X$

再次尝试安装requirements.txt

出现错误:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
Requirement already satisfied: numpy in /data1/supersmpl/wzn/.conda/envs/PyMAF-X/lib/python3.10/site-packages (from -r requirements.txt (line 1)) (2.2.6)
Collecting scikit-image (from -r requirements.txt (line 2))
Using cached scikit_image-0.25.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (14 kB)
Collecting scipy (from -r requirements.txt (line 3))
Using cached scipy-1.15.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (61 kB)
Collecting sklearn (from -r requirements.txt (line 4))
Using cached sklearn-0.0.post12.tar.gz (2.6 kB)
Preparing metadata (setup.py) ... error
error: subprocess-exited-with-error

× python setup.py egg_info did not run successfully.
exit code: 1
╰─> [15 lines of output]
The 'sklearn' PyPI package is deprecated, use 'scikit-learn'
rather than 'sklearn' for pip commands.

Here is how to fix this error in the main use cases:
- use 'pip install scikit-learn' rather than 'pip install sklearn'
- replace 'sklearn' by 'scikit-learn' in your pip requirements files
(requirements.txt, setup.py, setup.cfg, Pipfile, etc ...)
- if the 'sklearn' package is used by one of your dependencies,
it would be great if you take some time to track which package uses
'sklearn' instead of 'scikit-learn' and report it to their issue tracker
- as a last resort, set the environment variable
SKLEARN_ALLOW_DEPRECATED_SKLEARN_PACKAGE_INSTALL=True to avoid this error

More information is available at
<https://github.com/scikit-learn/sklearn-pypi-package>
[end of output]

note: This error originates from a subprocess, and is likely not a problem with pip.
error: metadata-generation-failed

× Encountered error while generating package metadata.
╰─> See above for output.

note: This is an issue with the package mentioned above, not pip.
hint: See above for details.
(PyMAF-X) wzn@amax:~/PyMAF-X$ pip install -r requirements.txt
Requirement already satisfied: numpy in /data1/supersmpl/wzn/.conda/envs/PyMAF-X/lib/python3.10/site-packages (from -r requirements.txt (line 1)) (2.2.6)
Collecting scikit-image (from -r requirements.txt (line 2))
Using cached scikit_image-0.25.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (14 kB)
Collecting scipy (from -r requirements.txt (line 3))
Using cached scipy-1.15.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (61 kB)
Collecting sklearn (from -r requirements.txt (line 4))
Using cached sklearn-0.0.post12.tar.gz (2.6 kB)
Preparing metadata (setup.py) ... error
error: subprocess-exited-with-error

× python setup.py egg_info did not run successfully.
exit code: 1
╰─> [15 lines of output]
The 'sklearn' PyPI package is deprecated, use 'scikit-learn'
rather than 'sklearn' for pip commands.

Here is how to fix this error in the main use cases:
- use 'pip install scikit-learn' rather than 'pip install sklearn'
- replace 'sklearn' by 'scikit-learn' in your pip requirements files
(requirements.txt, setup.py, setup.cfg, Pipfile, etc ...)
- if the 'sklearn' package is used by one of your dependencies,
it would be great if you take some time to track which package uses
'sklearn' instead of 'scikit-learn' and report it to their issue tracker
- as a last resort, set the environment variable
SKLEARN_ALLOW_DEPRECATED_SKLEARN_PACKAGE_INSTALL=True to avoid this error

More information is available at
<https://github.com/scikit-learn/sklearn-pypi-package>
[end of output]

note: This error originates from a subprocess, and is likely not a problem with pip.
error: metadata-generation-failed

× Encountered error while generating package metadata.
╰─> See above for output.

note: This is an issue with the package mentioned above, not pip.
hint: See above for details.

解决方法:将requirement.txt文件里面的sklearn换成scikit-learn

再次运行安装代码,再次出现错误:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
Collecting openpifpaf==0.13.1 (from -r requirements.txt (line 26))
Using cached openpifpaf-0.13.1.tar.gz (223 kB)
Installing build dependencies ... error
error: subprocess-exited-with-error

× pip subprocess to install build dependencies did not run successfully.
exit code: 1
╰─> [4 lines of output]
Collecting setuptools
Using cached setuptools-80.9.0-py3-none-any.whl.metadata (6.6 kB)
ERROR: Could not find a version that satisfies the requirement torch==1.9.0 (from versions: 1.11.0, 1.12.0, 1.12.1, 1.13.0, 1.13.1, 2.0.0, 2.0.1, 2.1.0, 2.1.1, 2.1.2, 2.2.0, 2.2.1, 2.2.2, 2.3.0, 2.3.1, 2.4.0, 2.4.1, 2.5.0, 2.5.1, 2.6.0, 2.7.0, 2.7.1, 2.8.0)
ERROR: No matching distribution found for torch==1.9.0
[end of output]

note: This error originates from a subprocess, and is likely not a problem with pip.
error: subprocess-exited-with-error

× pip subprocess to install build dependencies did not run successfully.
exit code: 1
╰─> See above for output.

note: This error originates from a subprocess, and is likely not a problem with pip.

解决方法:在requirement.txt文件中注释掉openpifpaf

再次尝试安装

成功,结果如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
Requirement already satisfied: numpy in /data1/supersmpl/wzn/.conda/envs/PyMAF-X/lib/python3.10/site-packages (from -r requirements.txt (line 1)) (2.2.6)
Collecting scikit-image (from -r requirements.txt (line 2))
Using cached scikit_image-0.25.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (14 kB)
Collecting scipy (from -r requirements.txt (line 3))
Using cached scipy-1.15.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (61 kB)
Collecting scikit-learn (from -r requirements.txt (line 4))
Using cached scikit_learn-1.7.1-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (11 kB)
Collecting smplx==0.1.28 (from -r requirements.txt (line 5))
Using cached smplx-0.1.28-py3-none-any.whl.metadata (10 kB)
Requirement already satisfied: tqdm in /data1/supersmpl/wzn/.conda/envs/PyMAF-X/lib/python3.10/site-packages (from -r requirements.txt (line 6)) (4.67.1)
Collecting yacs (from -r requirements.txt (line 7))
Using cached yacs-0.1.8-py3-none-any.whl.metadata (639 bytes)
Collecting numba (from -r requirements.txt (line 8))
Using cached numba-0.61.2-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (2.8 kB)
Collecting opencv-python (from -r requirements.txt (line 9))
Using cached opencv_python-4.12.0.88-cp37-abi3-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (19 kB)
Collecting tensorboardx (from -r requirements.txt (line 10))
Using cached tensorboardx-2.6.4-py3-none-any.whl.metadata (6.2 kB)
Collecting filterpy (from -r requirements.txt (line 11))
Using cached filterpy-1.4.5-py3-none-any.whl
Collecting cython (from -r requirements.txt (line 12))
Using cached cython-3.1.3-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.metadata (4.7 kB)
Collecting chumpy (from -r requirements.txt (line 13))
Using cached chumpy-0.70-py3-none-any.whl
Requirement already satisfied: Pillow in /data1/supersmpl/wzn/.conda/envs/PyMAF-X/lib/python3.10/site-packages (from -r requirements.txt (line 14)) (11.3.0)
Collecting trimesh (from -r requirements.txt (line 15))
Using cached trimesh-4.7.4-py3-none-any.whl.metadata (18 kB)
Collecting pyrender (from -r requirements.txt (line 16))
Using cached pyrender-0.1.45-py3-none-any.whl.metadata (1.5 kB)
Collecting matplotlib (from -r requirements.txt (line 17))
Using cached matplotlib-3.10.6-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (11 kB)
Collecting json_tricks (from -r requirements.txt (line 18))
Using cached json_tricks-3.17.3-py2.py3-none-any.whl.metadata (16 kB)
Collecting torchgeometry (from -r requirements.txt (line 19))
Using cached torchgeometry-0.1.2-py2.py3-none-any.whl.metadata (2.9 kB)
Collecting einops (from -r requirements.txt (line 20))
Using cached einops-0.8.1-py3-none-any.whl.metadata (13 kB)
Collecting joblib (from -r requirements.txt (line 21))
Using cached joblib-1.5.2-py3-none-any.whl.metadata (5.6 kB)
Collecting boto3 (from -r requirements.txt (line 22))
Using cached boto3-1.40.21-py3-none-any.whl.metadata (6.7 kB)
Collecting requests (from -r requirements.txt (line 23))
Using cached requests-2.32.5-py3-none-any.whl.metadata (4.9 kB)
Collecting easydict (from -r requirements.txt (line 24))
Using cached easydict-1.13-py3-none-any.whl.metadata (4.2 kB)
Collecting pycocotools (from -r requirements.txt (line 25))
Using cached pycocotools-2.0.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (1.3 kB)
Collecting kornia (from -r requirements.txt (line 27))
Using cached kornia-0.8.1-py2.py3-none-any.whl.metadata (17 kB)
Requirement already satisfied: torch>=1.0.1.post2 in /data1/supersmpl/wzn/.conda/envs/PyMAF-X/lib/python3.10/site-packages (from smplx==0.1.28->-r requirements.txt (line 5)) (2.3.1+cu118)
Requirement already satisfied: networkx>=3.0 in /data1/supersmpl/wzn/.conda/envs/PyMAF-X/lib/python3.10/site-packages (from scikit-image->-r requirements.txt (line 2)) (3.4.2)
Collecting imageio!=2.35.0,>=2.33 (from scikit-image->-r requirements.txt (line 2))
Using cached imageio-2.37.0-py3-none-any.whl.metadata (5.2 kB)
Collecting tifffile>=2022.8.12 (from scikit-image->-r requirements.txt (line 2))
Using cached tifffile-2025.5.10-py3-none-any.whl.metadata (31 kB)
Collecting packaging>=21 (from scikit-image->-r requirements.txt (line 2))
Using cached packaging-25.0-py3-none-any.whl.metadata (3.3 kB)
Collecting lazy-loader>=0.4 (from scikit-image->-r requirements.txt (line 2))
Using cached lazy_loader-0.4-py3-none-any.whl.metadata (7.6 kB)
Collecting threadpoolctl>=3.1.0 (from scikit-learn->-r requirements.txt (line 4))
Using cached threadpoolctl-3.6.0-py3-none-any.whl.metadata (13 kB)
Collecting PyYAML (from yacs->-r requirements.txt (line 7))
Using cached PyYAML-6.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (2.1 kB)
Collecting llvmlite<0.45,>=0.44.0dev0 (from numba->-r requirements.txt (line 8))
Using cached llvmlite-0.44.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (4.8 kB)
Collecting protobuf>=3.20 (from tensorboardx->-r requirements.txt (line 10))
Using cached protobuf-6.32.0-cp39-abi3-manylinux2014_x86_64.whl.metadata (593 bytes)
Collecting six>=1.11.0 (from chumpy->-r requirements.txt (line 13))
Using cached six-1.17.0-py2.py3-none-any.whl.metadata (1.7 kB)
Collecting freetype-py (from pyrender->-r requirements.txt (line 16))
Using cached freetype_py-2.5.1-py3-none-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.metadata (6.3 kB)
Collecting pyglet>=1.4.10 (from pyrender->-r requirements.txt (line 16))
Using cached pyglet-2.1.8-py3-none-any.whl.metadata (7.7 kB)
Collecting PyOpenGL==3.1.0 (from pyrender->-r requirements.txt (line 16))
Using cached pyopengl-3.1.0-py3-none-any.whl
Collecting contourpy>=1.0.1 (from matplotlib->-r requirements.txt (line 17))
Using cached contourpy-1.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (5.5 kB)
Collecting cycler>=0.10 (from matplotlib->-r requirements.txt (line 17))
Using cached cycler-0.12.1-py3-none-any.whl.metadata (3.8 kB)
Collecting fonttools>=4.22.0 (from matplotlib->-r requirements.txt (line 17))
WARNING: Retrying (Retry(total=4, connect=None, read=None, redirect=None, status=None)) after connection broken by 'ProxyError('Cannot connect to proxy.', ConnectionResetError(104, 'Connection reset by peer'))': /packages/31/ed/abed08178e06fab3513b845c045cb09145c877d50121668add2f308a6c19/fonttools-4.59.2-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata
Downloading fonttools-4.59.2-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (109 kB)
Collecting kiwisolver>=1.3.1 (from matplotlib->-r requirements.txt (line 17))
Using cached kiwisolver-1.4.9-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.metadata (6.3 kB)
Collecting pyparsing>=2.3.1 (from matplotlib->-r requirements.txt (line 17))
Using cached pyparsing-3.2.3-py3-none-any.whl.metadata (5.0 kB)
Collecting python-dateutil>=2.7 (from matplotlib->-r requirements.txt (line 17))
Using cached python_dateutil-2.9.0.post0-py2.py3-none-any.whl.metadata (8.4 kB)
Collecting botocore<1.41.0,>=1.40.21 (from boto3->-r requirements.txt (line 22))
Downloading botocore-1.40.21-py3-none-any.whl.metadata (5.7 kB)
Collecting jmespath<2.0.0,>=0.7.1 (from boto3->-r requirements.txt (line 22))
Using cached jmespath-1.0.1-py3-none-any.whl.metadata (7.6 kB)
Collecting s3transfer<0.14.0,>=0.13.0 (from boto3->-r requirements.txt (line 22))
Using cached s3transfer-0.13.1-py3-none-any.whl.metadata (1.7 kB)
Collecting urllib3!=2.2.0,<3,>=1.25.4 (from botocore<1.41.0,>=1.40.21->boto3->-r requirements.txt (line 22))
Using cached urllib3-2.5.0-py3-none-any.whl.metadata (6.5 kB)
Collecting charset_normalizer<4,>=2 (from requests->-r requirements.txt (line 23))
Using cached charset_normalizer-3.4.3-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.metadata (36 kB)
Collecting idna<4,>=2.5 (from requests->-r requirements.txt (line 23))
Using cached idna-3.10-py3-none-any.whl.metadata (10 kB)
Collecting certifi>=2017.4.17 (from requests->-r requirements.txt (line 23))
Using cached certifi-2025.8.3-py3-none-any.whl.metadata (2.4 kB)
Collecting kornia_rs>=0.1.9 (from kornia->-r requirements.txt (line 27))
Using cached kornia_rs-0.1.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (11 kB)
Requirement already satisfied: filelock in /data1/supersmpl/wzn/.conda/envs/PyMAF-X/lib/python3.10/site-packages (from torch>=1.0.1.post2->smplx==0.1.28->-r requirements.txt (line 5)) (3.19.1)
Requirement already satisfied: typing-extensions>=4.8.0 in /data1/supersmpl/wzn/.conda/envs/PyMAF-X/lib/python3.10/site-packages (from torch>=1.0.1.post2->smplx==0.1.28->-r requirements.txt (line 5)) (4.15.0)
Requirement already satisfied: sympy in /data1/supersmpl/wzn/.conda/envs/PyMAF-X/lib/python3.10/site-packages (from torch>=1.0.1.post2->smplx==0.1.28->-r requirements.txt (line 5)) (1.14.0)
Requirement already satisfied: jinja2 in /data1/supersmpl/wzn/.conda/envs/PyMAF-X/lib/python3.10/site-packages (from torch>=1.0.1.post2->smplx==0.1.28->-r requirements.txt (line 5)) (3.1.6)
Requirement already satisfied: fsspec in /data1/supersmpl/wzn/.conda/envs/PyMAF-X/lib/python3.10/site-packages (from torch>=1.0.1.post2->smplx==0.1.28->-r requirements.txt (line 5)) (2025.7.0)
Requirement already satisfied: nvidia-cuda-nvrtc-cu11==11.8.89 in /data1/supersmpl/wzn/.conda/envs/PyMAF-X/lib/python3.10/site-packages (from torch>=1.0.1.post2->smplx==0.1.28->-r requirements.txt (line 5)) (11.8.89)
Requirement already satisfied: nvidia-cuda-runtime-cu11==11.8.89 in /data1/supersmpl/wzn/.conda/envs/PyMAF-X/lib/python3.10/site-packages (from torch>=1.0.1.post2->smplx==0.1.28->-r requirements.txt (line 5)) (11.8.89)
Requirement already satisfied: nvidia-cuda-cupti-cu11==11.8.87 in /data1/supersmpl/wzn/.conda/envs/PyMAF-X/lib/python3.10/site-packages (from torch>=1.0.1.post2->smplx==0.1.28->-r requirements.txt (line 5)) (11.8.87)
Requirement already satisfied: nvidia-cudnn-cu11==8.7.0.84 in /data1/supersmpl/wzn/.conda/envs/PyMAF-X/lib/python3.10/site-packages (from torch>=1.0.1.post2->smplx==0.1.28->-r requirements.txt (line 5)) (8.7.0.84)
Requirement already satisfied: nvidia-cublas-cu11==11.11.3.6 in /data1/supersmpl/wzn/.conda/envs/PyMAF-X/lib/python3.10/site-packages (from torch>=1.0.1.post2->smplx==0.1.28->-r requirements.txt (line 5)) (11.11.3.6)
Requirement already satisfied: nvidia-cufft-cu11==10.9.0.58 in /data1/supersmpl/wzn/.conda/envs/PyMAF-X/lib/python3.10/site-packages (from torch>=1.0.1.post2->smplx==0.1.28->-r requirements.txt (line 5)) (10.9.0.58)
Requirement already satisfied: nvidia-curand-cu11==10.3.0.86 in /data1/supersmpl/wzn/.conda/envs/PyMAF-X/lib/python3.10/site-packages (from torch>=1.0.1.post2->smplx==0.1.28->-r requirements.txt (line 5)) (10.3.0.86)
Requirement already satisfied: nvidia-cusolver-cu11==11.4.1.48 in /data1/supersmpl/wzn/.conda/envs/PyMAF-X/lib/python3.10/site-packages (from torch>=1.0.1.post2->smplx==0.1.28->-r requirements.txt (line 5)) (11.4.1.48)
Requirement already satisfied: nvidia-cusparse-cu11==11.7.5.86 in /data1/supersmpl/wzn/.conda/envs/PyMAF-X/lib/python3.10/site-packages (from torch>=1.0.1.post2->smplx==0.1.28->-r requirements.txt (line 5)) (11.7.5.86)
Requirement already satisfied: nvidia-nccl-cu11==2.20.5 in /data1/supersmpl/wzn/.conda/envs/PyMAF-X/lib/python3.10/site-packages (from torch>=1.0.1.post2->smplx==0.1.28->-r requirements.txt (line 5)) (2.20.5)
Requirement already satisfied: nvidia-nvtx-cu11==11.8.86 in /data1/supersmpl/wzn/.conda/envs/PyMAF-X/lib/python3.10/site-packages (from torch>=1.0.1.post2->smplx==0.1.28->-r requirements.txt (line 5)) (11.8.86)
Requirement already satisfied: triton==2.3.1 in /data1/supersmpl/wzn/.conda/envs/PyMAF-X/lib/python3.10/site-packages (from torch>=1.0.1.post2->smplx==0.1.28->-r requirements.txt (line 5)) (2.3.1)
Requirement already satisfied: MarkupSafe>=2.0 in /data1/supersmpl/wzn/.conda/envs/PyMAF-X/lib/python3.10/site-packages (from jinja2->torch>=1.0.1.post2->smplx==0.1.28->-r requirements.txt (line 5)) (3.0.2)
Requirement already satisfied: mpmath<1.4,>=1.1.0 in /data1/supersmpl/wzn/.conda/envs/PyMAF-X/lib/python3.10/site-packages (from sympy->torch>=1.0.1.post2->smplx==0.1.28->-r requirements.txt (line 5)) (1.3.0)
Using cached smplx-0.1.28-py3-none-any.whl (29 kB)
Using cached scikit_image-0.25.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.8 MB)
Using cached scipy-1.15.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (37.7 MB)
Using cached scikit_learn-1.7.1-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (9.7 MB)
Using cached yacs-0.1.8-py3-none-any.whl (14 kB)
Using cached numba-0.61.2-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (3.8 MB)
Using cached llvmlite-0.44.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (42.4 MB)
Using cached opencv_python-4.12.0.88-cp37-abi3-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (67.0 MB)
Using cached tensorboardx-2.6.4-py3-none-any.whl (87 kB)
Using cached cython-3.1.3-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (3.4 MB)
Using cached trimesh-4.7.4-py3-none-any.whl (709 kB)
Using cached pyrender-0.1.45-py3-none-any.whl (1.2 MB)
Downloading matplotlib-3.10.6-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (8.7 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 8.7/8.7 MB 5.0 MB/s eta 0:00:00
Using cached json_tricks-3.17.3-py2.py3-none-any.whl (27 kB)
Using cached torchgeometry-0.1.2-py2.py3-none-any.whl (42 kB)
Using cached einops-0.8.1-py3-none-any.whl (64 kB)
Using cached joblib-1.5.2-py3-none-any.whl (308 kB)
Downloading boto3-1.40.21-py3-none-any.whl (139 kB)
Downloading botocore-1.40.21-py3-none-any.whl (14.0 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 14.0/14.0 MB 4.8 MB/s eta 0:00:00
Using cached jmespath-1.0.1-py3-none-any.whl (20 kB)
Using cached python_dateutil-2.9.0.post0-py2.py3-none-any.whl (229 kB)
Using cached s3transfer-0.13.1-py3-none-any.whl (85 kB)
Using cached urllib3-2.5.0-py3-none-any.whl (129 kB)
Using cached requests-2.32.5-py3-none-any.whl (64 kB)
Using cached charset_normalizer-3.4.3-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (152 kB)
Using cached idna-3.10-py3-none-any.whl (70 kB)
Using cached easydict-1.13-py3-none-any.whl (6.8 kB)
Using cached pycocotools-2.0.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (455 kB)
Using cached kornia-0.8.1-py2.py3-none-any.whl (1.1 MB)
Using cached certifi-2025.8.3-py3-none-any.whl (161 kB)
Using cached contourpy-1.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (325 kB)
Using cached cycler-0.12.1-py3-none-any.whl (8.3 kB)
Downloading fonttools-4.59.2-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (4.8 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 4.8/4.8 MB 4.5 MB/s eta 0:00:00
Using cached imageio-2.37.0-py3-none-any.whl (315 kB)
Using cached kiwisolver-1.4.9-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB)
Using cached kornia_rs-0.1.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB)
Using cached lazy_loader-0.4-py3-none-any.whl (12 kB)
Using cached packaging-25.0-py3-none-any.whl (66 kB)
Using cached protobuf-6.32.0-cp39-abi3-manylinux2014_x86_64.whl (322 kB)
Using cached pyglet-2.1.8-py3-none-any.whl (1.0 MB)
Using cached pyparsing-3.2.3-py3-none-any.whl (111 kB)
Using cached six-1.17.0-py2.py3-none-any.whl (11 kB)
Using cached threadpoolctl-3.6.0-py3-none-any.whl (18 kB)
Using cached tifffile-2025.5.10-py3-none-any.whl (226 kB)
Using cached freetype_py-2.5.1-py3-none-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.0 MB)
Using cached PyYAML-6.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (751 kB)
Installing collected packages: PyOpenGL, json_tricks, easydict, urllib3, trimesh, tifffile, threadpoolctl, six, scipy, PyYAML, pyparsing, pyglet, pycocotools, protobuf, packaging, opencv-python, llvmlite, kornia_rs, kiwisolver, joblib, jmespath, imageio, idna, freetype-py, fonttools, einops, cython, cycler, contourpy, charset_normalizer, certifi, yacs, tensorboardx, scikit-learn, requests, python-dateutil, pyrender, numba, lazy-loader, chumpy, torchgeometry, smplx, scikit-image, matplotlib, kornia, botocore, s3transfer, filterpy, boto3
Successfully installed PyOpenGL-3.1.0 PyYAML-6.0.2 boto3-1.40.21 botocore-1.40.21 certifi-2025.8.3 charset_normalizer-3.4.3 chumpy-0.70 contourpy-1.3.2 cycler-0.12.1 cython-3.1.3 easydict-1.13 einops-0.8.1 filterpy-1.4.5 fonttools-4.59.2 freetype-py-2.5.1 idna-3.10 imageio-2.37.0 jmespath-1.0.1 joblib-1.5.2 json_tricks-3.17.3 kiwisolver-1.4.9 kornia-0.8.1 kornia_rs-0.1.9 lazy-loader-0.4 llvmlite-0.44.0 matplotlib-3.10.6 numba-0.61.2 opencv-python-4.12.0.88 packaging-25.0 protobuf-6.32.0 pycocotools-2.0.10 pyglet-2.1.8 pyparsing-3.2.3 pyrender-0.1.45 python-dateutil-2.9.0.post0 requests-2.32.5 s3transfer-0.13.1 scikit-image-0.25.2 scikit-learn-1.7.1 scipy-1.15.3 six-1.17.0 smplx-0.1.28 tensorboardx-2.6.4 threadpoolctl-3.6.0 tifffile-2025.5.10 torchgeometry-0.1.2 trimesh-4.7.4 urllib3-2.5.0 yacs-0.1.8

安装过程1min左右,中间一段warning可以不用管

  • 安装fetch_data.sh里面的剩余文件

运行代码:

1
bash fetch_data.sh

安装时间不到1min

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
--2025-08-30 20:12:48--  <http://visiondata.cis.upenn.edu/spin/data.tar.gz>
Connecting to 127.0.0.1:7890... connected.
Proxy request sent, awaiting response... 301 Moved Permanently
Location: <https://visiondata.cis.upenn.edu/spin/data.tar.gz> [following]
--2025-08-30 20:12:49-- <https://visiondata.cis.upenn.edu/spin/data.tar.gz>
Connecting to 127.0.0.1:7890... connected.
Proxy request sent, awaiting response... 200 OK
Length: 14960640 (14M) [application/x-gzip]
Saving to: ‘data.tar.gz’

data.tar.gz 100%[===============================================================================>] 14.27M 2.25MB/s in 6.6s

2025-08-30 20:12:57 (2.16 MB/s) - ‘data.tar.gz’ saved [14960640/14960640]

data/
data/J_regressor_h36m.npy
data/cube_parts.npy
data/train.h5
data/vertex_texture.npy
data/smpl_mean_params.npz
data/J_regressor_extra.npy
data/gmm_08.pkl
--2025-08-30 20:12:57-- <https://github.com/nkolot/GraphCMR/raw/master/data/mesh_downsampling.npz>
Connecting to 127.0.0.1:7890... connected.
Proxy request sent, awaiting response... 302 Found
Location: <https://raw.githubusercontent.com/nkolot/GraphCMR/master/data/mesh_downsampling.npz> [following]
--2025-08-30 20:12:58-- <https://raw.githubusercontent.com/nkolot/GraphCMR/master/data/mesh_downsampling.npz>
Connecting to 127.0.0.1:7890... connected.
Proxy request sent, awaiting response... 200 OK
Length: 1720359 (1.6M) [application/octet-stream]
Saving to: ‘data/smpl_downsampling.npz’

data/smpl_downsampling.npz 100%[===============================================================================>] 1.64M 3.96MB/s in 0.4s

2025-08-30 20:12:59 (3.96 MB/s) - ‘data/smpl_downsampling.npz’ saved [1720359/1720359]

--2025-08-30 20:12:59-- <https://github.com/microsoft/MeshGraphormer/raw/main/src/modeling/data/mano_downsampling.npz>
Connecting to 127.0.0.1:7890... connected.
Proxy request sent, awaiting response... 302 Found
Location: <https://raw.githubusercontent.com/microsoft/MeshGraphormer/main/src/modeling/data/mano_downsampling.npz> [following]
--2025-08-30 20:13:00-- <https://raw.githubusercontent.com/microsoft/MeshGraphormer/main/src/modeling/data/mano_downsampling.npz>
Connecting to 127.0.0.1:7890... connected.
Proxy request sent, awaiting response... 200 OK
Length: 176509 (172K) [application/octet-stream]
Saving to: ‘data/mano_downsampling.npz’

data/mano_downsampling.npz 100%[===============================================================================>] 172.37K 111KB/s in 1.6s

2025-08-30 20:13:02 (111 KB/s) - ‘data/mano_downsampling.npz’ saved [176509/176509]
  • 尝试图形输入,并检查结果

运行以下代码:

1
xvfb-run -a python -m apps.demo_smplx --image_folder examples/coco_images --detection_threshold 0.3 --pretrained_model data/pretrained_model/PyMAF-X_model_checkpoint_v1.1.pt --misc TRAIN.BHF_MODE full_body MODEL.PyMAF.HAND_VIS_TH 0.1

出现问题:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
Traceback (most recent call last):
File "/data1/supersmpl/wzn/.conda/envs/PyMAF-X/lib/python3.10/runpy.py", line 196, in _run_module_as_main
return _run_code(code, main_globals, None,
File "/data1/supersmpl/wzn/.conda/envs/PyMAF-X/lib/python3.10/runpy.py", line 86, in _run_code
exec(code, run_globals)
File "/data1/supersmpl/wzn/PyMAF-X/apps/demo_smplx.py", line 42, in <module>
from models import hmr, pymaf_net
File "/data1/supersmpl/wzn/PyMAF-X/models/__init__.py", line 2, in <module>
from .pymaf_net import pymaf_net
File "/data1/supersmpl/wzn/PyMAF-X/models/pymaf_net.py", line 17, in <module>
from .maf_extractor import MAF_Extractor, Mesh_Sampler
File "/data1/supersmpl/wzn/PyMAF-X/models/maf_extractor.py", line 6, in <module>
from numpy.lib.twodim_base import triu_indices_from
ModuleNotFoundError: No module named 'numpy.lib.twodim_base'

这里应该是numpy版本问题,选择numpy版本为1.23.0

1
pip install numpy==1.23.0

安装成功:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
Collecting numpy==1.23.0
Using cached numpy-1.23.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (2.2 kB)
Using cached numpy-1.23.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.0 MB)
Installing collected packages: numpy
Attempting uninstall: numpy
Found existing installation: numpy 2.2.6
Uninstalling numpy-2.2.6:
Successfully uninstalled numpy-2.2.6
ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
numba 0.61.2 requires numpy<2.3,>=1.24, but you have numpy 1.23.0 which is incompatible.
opencv-python 4.12.0.88 requires numpy<2.3.0,>=2; python_version >= "3.9", but you have numpy 1.23.0 which is incompatible.
scikit-image 0.25.2 requires numpy>=1.24, but you have numpy 1.23.0 which is incompatible.
scipy 1.15.3 requires numpy<2.5,>=1.23.5, but you have numpy 1.23.0 which is incompatible.
Successfully installed numpy-1.23.0

中间有error错误报信,不用管它,再次运行指令,出现错误:

1
2
3
4
5
6
7
8
9
10
11
12
13
/data1/supersmpl/wzn/.conda/envs/PyMAF-X/lib/python3.10/site-packages/skimage/transform/_warps.py:2: UserWarning: A NumPy version >=1.23.5 and <2.5.0 is required for this version of SciPy (detected version 1.23.0)
from scipy import ndimage as ndi
/data1/supersmpl/wzn/PyMAF-X/models/hr_module.py:481: SyntaxWarning: "is" with a literal. Did you mean "=="?
or self.pretrained_layers[0] is '*':
INFO:OpenGL.acceleratesupport:No OpenGL_accelerate module loaded: No module named 'OpenGL_accelerate'
Traceback (most recent call last):
File "/data1/supersmpl/wzn/.conda/envs/PyMAF-X/lib/python3.10/runpy.py", line 196, in _run_module_as_main
return _run_code(code, main_globals, None,
File "/data1/supersmpl/wzn/.conda/envs/PyMAF-X/lib/python3.10/runpy.py", line 86, in _run_code
exec(code, run_globals)
File "/data1/supersmpl/wzn/PyMAF-X/apps/demo_smplx.py", line 56, in <module>
from openpifpaf import decoder as ppdecoder
ModuleNotFoundError: No module named 'openpifpaf'

两个错误,一个是没有一个叫’OpenGL_accelerate’的模板,解决方法:

运行代码:

1
pip install OpenGL_accelerate

将demo_smplx.py文件的第21行,train.py文件的第2行,renderer.py文件的第227,229和230行注释掉,第228行不能注释,但是注意缩进

还有就是缺少openpifpaf的模板问题,解决办法:

1
python setup.py install

注意,这里面的setup.py已经将其中三行关于torch,torchvision和numpy的版本限定代码注释掉之后的结果。

再次运行代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
/data1/supersmpl/wzn/.conda/envs/PyMAF-X/lib/python3.10/site-packages/skimage/transform/_warps.py:2: UserWarning: A NumPy version >=1.23.5 and <2.5.0 is required for this version of SciPy (detected version 1.23.0)
from scipy import ndimage as ndi
INFO:OpenGL.acceleratesupport:OpenGL_accelerate module loaded
INFO:OpenGL.arrays.arraydatatype:Using accelerated ArrayDatatype
initializing openpifpaf
Running demo...
Input video number of frames 2
INFO:openpifpaf.predictor:Using multiple GPUs: 2
INFO:openpifpaf.decoder.factory:No specific decoder requested. Using the first one from:
--decoder=cifcaf:0
--decoder=posesimilarity:0
Use any of the above arguments to select one or multiple decoders and to suppress this message.
INFO:openpifpaf.predictor:neural network device: cuda (CUDA available: True, count: 2)
Running openpifpaf for person detection...
0%| | 0/2 [00:00<?, ?it/s]/data1/supersmpl/share/openpifpaf/src/openpifpaf/csrc/src/cif_hr.cpp:102: UserInfo: resizing cifhr buffer
/data1/supersmpl/share/openpifpaf/src/openpifpaf/csrc/src/occupancy.cpp:53: UserInfo: resizing occupancy buffer
INFO:openpifpaf.decoder.cifcaf:annotations 116: [130, 129, 127, 106, 100, 63, 31, 17, 13, 12, 9, 8, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
INFO:openpifpaf.predictor:batch 0: examples/coco_images/COCO_val2014_000000004700.jpg
50%|██████████████████████████████████████████████████████████████▌ | 1/2 [00:00<00:00, 1.27it/s]INFO:openpifpaf.decoder.cifcaf:annotations 12: [133, 133, 93, 1, 0, 0, 0, 0, 0, 0, 0, 0]
INFO:openpifpaf.predictor:batch 1: examples/coco_images/COCO_val2014_000000477655.jpg
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.15it/s]
WARNING: You are using a SMPL model, with only 10 shape coefficients.
WARNING: You are using a SMPL model, with only 10 shape coefficients.
WARNING: You are using a MANO model, with only 10 shape coefficients.
/data1/supersmpl/wzn/.conda/envs/PyMAF-X/lib/python3.10/site-packages/smplx/body_models.py:1967: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at ../torch/csrc/utils/tensor_new.cpp:274.)
dynamic_lmk_b_coords = torch.tensor(
WARNING: You are using a SMPL model, with only 10 shape coefficients.
WARNING: You are using a SMPL model, with only 10 shape coefficients.
/data1/supersmpl/wzn/.conda/envs/PyMAF-X/lib/python3.10/site-packages/torch/functional.py:512: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:3587.)
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]
/data1/supersmpl/wzn/PyMAF-X/models/maf_extractor.py:60: UserWarning: torch.sparse.SparseTensor(indices, values, shape, *, device=) is deprecated. Please use torch.sparse_coo_tensor(indices, values, shape, dtype=, device=). (Triggered internally at ../torch/csrc/utils/tensor_new.cpp:621.)
ptD.append(torch.sparse.FloatTensor(i, v, d.shape))
WARNING: You are using a SMPL model, with only 10 shape coefficients.
WARNING: You are using a SMPL model, with only 10 shape coefficients.
WARNING: You are using a SMPL model, with only 10 shape coefficients.
Loading pretrained weights from "data/pretrained_model/PyMAF-X_model_checkpoint_v1.1.pt"
loaded checkpoint: data/pretrained_model/PyMAF-X_model_checkpoint_v1.1.pt
Running reconstruction on each tracklet...
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:02<00:00, 1.30s/it]
Total time spent for reconstruction: 11.21 seconds (including model loading time).
Saving output results to "output/coco_images/output.pkl".
WARNING: You are using a SMPL model, with only 10 shape coefficients.
WARNING: You are using a MANO model, with only 10 shape coefficients.
Rendering results, writing frames to output/coco_images/coco_images_output
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:02<00:00, 1.28s/it]
================= END ==============

复现成功

  • 结果记录

原图片:

重建后:

全身复现结果:

手臂复现结果:


PyMAF-X模型完整复现记录
http://example.com/2025/09/16/PyMAF-X复现记录/
作者
牧丛
发布于
2025年9月16日
许可协议